PHYS 105 Physics I – Section 01 Fall-2016 Syllabus

Required or Elective	■ Required □ Elective	Date	September 26, 2016		
Semester	■ Fall 2016–17 □ Spring 2016–17 □ Summer 2016–17	Class Hours	Monday 11:00 – 13:50 A 111L Tuesday 11:00 – 12:50 K 183 Wednesday 14:00 – 14:50 K 183		
Course Credit Hours/ ECTS	(3,0,2) 4 / 6 ECTS	Pre-requisite/ Co-requisite	None		
Level of Course	Freshman	Language of Instruction	■ English ☐ Turkish		
Instructor	Prof. Dr. Şinasi Ellialtıoğlu	Instructor's Office Hours	Wednesday 11:00–12:00 and/or by appointment		
Instructor's Office	Building A, Rm. 411 0 (312) 585 00 18	Instructor's e-mail	sinasi.ellialtioglu@tedu.edu.tr		
Teaching Assistant	Ömer Can Pamuk Building B, Rm. 343	Teaching Assistant's Phone and e-mail	0 (312) 585 00 54 omer.pamuk@tedu.edu.tr		

	Vectors and coordinate systems; kinematics, dynamics, Newton's Laws of motion.			
Course Description	Charge; electric field, Gauss' law; electric potential; capacitors; DC circuits.			
	Temperature; Zeroth law of thermodynamics; Thermal expansion; Ideal gas law.			
	On successful completion of this module, the students should be able to:			
	1. Convert (C) the verbal description of a problem into the language of physics, sketch (a) a diagram to analyze (A) it in terms of the known and unknown physical quantities.			
	 Apply (a) the fundamental principles of physics, like the three laws of Newton, Gauss' Law, Kirchhoff's rules or the Zeroth law of thermodynamics; expressed as (C) mathematical equations involving the known/unknown physical quantities for any given problem, and then solve (a) them for the unknowns. 			
Course Learning Outcomes	3. Recognize (a) differentiation as a tool to evaluate (E) the slope of a curve or integration as a tool to evaluate (E) the area under a curve, respectively, in determining related physical quantities.			
	4. Evaluate (E) the correct number of significant figures for each parameter in the given problem; perform calculations using estimates of order of magnitudes, and carry out unit algebra.			
	5. Employ (a) the vector notation in order to identify (C) the components of multidimensional problems and evaluate (E) each independently.			
	6. Express (C) verbally and in writing the concepts, processes and results in general physics effectively and competently.			
	Bloom's Taxonomy Levels:			
	(C) Comprehension, (a) Application, (A) Analyze, (E) Evaluate.			
	(a) and (a) is being and (a) is being and (a) is a substantial (a)			

Charles	■ Lectures 50 hrs.	■ Laboratory Applications 30 hrs.
Student Workload	■ Course Readings25 hrs.	☐ Oral Presentation 0 hrs.
(Total 180 hrs.)	☐ Online Discussions 0 hrs.	☐ Poster Presentation 0 hrs.
(10tai 180 nrs.)	■ Exams/Quizzes20 hrs.	■ Other: Online Homework 50 hrs.

Textbook	Giancoli, "Physics for Scientists and Engineers, with Modern Physics", 4th Edition, 2009.		
Recommended Readings	 Halliday, Resnick, and Walker, "Principles of Physics", 9th Edition, 2011. Jewett and Serway, "Physics for Scientists and Engineers, with Modern Physics", 8th Edition, 2009. Young and Freedman, "University Physics with Modern Physics", 13th Edition, 2011. 		
Module and Instructor Evaluation Date	Evaluation will be held on December 28, 2016 Thursday , in class.		
Computer Usage	The Mastering Physics (MP) online homework system will be used for homework assignments. In order to access online homework problems, students are expected to obtain a copy of the textbook with "Student Access Kit" from TEDU Bookstore. (http://www.masteringphysics.com) Sign up for "F16PHYS105ELLIALTIOGLU"		

TENTATIVE COURSE OUTLINE				
WEEK	Topics	Objectives		
1	Ch.2 Sec. [1-7]Kinematics in one dimensionConstant acceleration caseFree fall	Describe straight-line motion in terms of velocity and acceleration. Interpret graphs of position, velocity and acceleration as functions of time.		
2	 Ch. 3 Sec. [1-9] Vectors Kinematics in 2D and 3D Projectile motion, Relative motion 	Introduce vectors in Cartesian and polar coordinates, their addition graphically and also algebraically in terms of their Cartesian components. Utilize unit vectors. Solve problems for two-dimensional motion by decomposing it into its components. Describe the curved path of a projectile.		
3	Ch. 4 Sec. [1-8]DynamicsNewton's three laws of nature	Introduce the concept of force and relate it to the mass and acceleration of the object in motion. Analyze and utilize Newton's laws of motion using free-body diagrams.		
4	Ch. 5 Sec. [1-4] • Various forces	Weight, normal force, contact force, tension, friction force, spring force, centripetal force, drag force.		
5	Friction Circular motion	Static and kinetic friction forces. Relate centripetal force to velocity of the particle and the radius of its circular path.		
5/11	EXAM 1			
6	Ch.21 Sec. [1-3, 5, 6, 8, 9]Electric chargeCoulomb's lawElectric field	The nature of electric charge, another conserved quantity. Electric forces between charges, another inverse square law. The distinction between electric force and electric field. Electric field due to discrete and continuous distribution of charges. Electric field lines.		
7	Ch.22 Sec. [1-3] • Electric flux • Gauss' Law	Gauss's law that relates electric flux through a closed surface and the charge enclosed by the surface. Charge resides on the surface of a conductor.		
8	Ch.23 Sec. [1-3,5,8] • Electric potential • Equipotential surfaces • Electrostatic potential energy	The electric potential energy of, and electric potential due to a collection of charges. Use the electric potential surface to visualize the variation of the electric filed in space, and to calculate the electric field at any point.		
9	Ch.24 Sec. [1, 4, 5] / Ch.25 Sec. [1, 2] Capacitors Dielectrics Electric current	The nature of capacitors. Capacitance as the measure of ability to store charge. Capacitors connected in a circuit. Energy stored in a capacitor and the effects of dielectrics. Charge flow in a conductor.		
10	Ch.25 Sec. [3-5,7] • Ohm's law • Resistance, Electric power	Meaning of the resistivity and the conductivity in a material, and their relation to the shape and dimensions of the conductor. Calculation of energy and power in circuits.		
11	 Ch.26 Sec. [1–4] EMF in series and in parallel Direct-current circuits Kirchhoff's rules 	Electromotive force (emf), that causes the current to flow in a conductor. Circuits with multiple resistors in series or parallel. Kirchhoff's rules applied to circuits with more than one loop. <i>RC</i> circuits.		

17/12	EXAM 2		
12	Ch.17 Sec. [1–3]	Motion in microscopic scale. The temperature and	
	Atomic theory of matter	measurement of temperature. Temperature scales.	
	Temperature & thermometers	Thermal equilibrium between systems.	
	Zeroth law of thermodynamics		
13	Ch.17 Sec. [4–5]	Expansion of length of a material due to temperature	
	Thermal expansion	change. Stress resulting temperature change.	
	Thermal stresses		
14	Ch.17 Sec. [6–9]	Relation between gas volume and pressure in constant	
	The Ideal Gas Law	temperature: Boyle's law. Effect of temperature on gas	
	Avagadro's number	volume: the ideal gas law.	
15–16	FINAL EXAM WEEKS, January 2–14, 2017 (date and time to be announced later).		

COURSE ASSIGNEMENTS

A. Quiz [5%]

There will be 3 quizzes given which will be held in class hours.

B. Online Homework Assignments [15%]

There will be one online homework assignment every month. Each will contain 6 problems and the access will be unavailable after their deadlines.

C. Laboratory [15%]

There will be six experiments.

D. Exams [20% + 20%]

There will be 2 one-hour exams: Exam 1 is on **November 5, 2016**; covering the Chapters 1–5; Exam 2 is on **December 17, 2016**; covering the Chapters 21–26.

E. Final Exam [25%]

There will be a **cumulative** final. Date of the final exam will be announced at the end of the semester.

COURSE ASSESSMENT AND LEARNING OUTCOMES MATRIX			
Assessment Methods	Course Learning Outcomes		
Monthly Quizzes	1, 3, 4, 6		
Bi-weekly online homework assignments	1, 2, 3, 4, 5		
Exam 1	1, 2, 3, 4, 6		
Exam 2	1, 2, 4, 6		
Final Exam	1, 2, 4, 5, 6		

GRADING SCALE				
Grades Grade Points		Percentage Scores		
AA	4.00	90 – 100		
BA	3.50	85 – 89		
BB	3.00	80 – 84		
СВ	2.50	75 – 79		
CC	2.00	70 – 74		
DC	1.50	60 – 69		
DD	1.00	50 – 59		
F	0.00	0 – 49		
FX	0.00	_		
Р	_	_		

CONTRIBUTION TO PROGRAM OUTCOMES					
РО	EEE	IE	CMPE	ME	CE
1	✓	✓	✓	✓	✓
2			✓	✓	✓
3		✓	✓	✓	✓
4	✓	✓			
5	✓				

CONTRIBUTION TO PROGRAM OUTCOMES

I. Attendance

You are expected to attend all classes. Classes start on the hour. Please be respectful of your classmates by being on time. Cell phones should be turned off and kept out of sight.

II. Calculator Policy

Cell phones will not be allowed in the exam, your own calculator is allowed.

III. Tutoring

In addition to office hours, there will be tutoring hours offered by appointment to get help. If you feel that you need to sign up for tutoring, please visit Dr. Mana Ece Tuna (Rm. 147, Phone: 585 00 45, e-mail: mana.tuna@tedu.edu.tr) for necessary arrangements.

IV. Plagiarism

Collaboration on non-collected homework and in studying is strongly encouraged; however, the work you hand in must be solely your own. Sharing written work before it is turned in to be graded as academic dishonesty. For more information on TEDU policy on intellectual integrity see the link

http://www.tedu.edu.tr/Assets/Documents/News/Public/TEDU Ogrenci El Kitabi 2012.pdf.

V. Disability Support

If you have a disabling condition which may interfere with your ability to successfully complete this module, please contact Dr. Tolga İnan (e-mail: tolga.inan@tedu.edu.tr). For more information please see Handbook for Registered Students.

VI. Make Up Exams

Make-up exams for Exam 1 and 2 will not be offered generally. If you have a legitimate reason for missing an exam, then you must arrange to make up the exam before the scheduled time of the exam. The only exceptions are illness or emergency (e.g., death in family, a traffic accident, etc.). In case of an illness or emergency you need to supply a documentation that supports your claim. The dates for make-up exam for Final are decided by Make-up Exam Commission according to the rules and regulation of TEDU. Please see the link http://www.tedu.edu.tr/en-US/Content/Default.aspx?SectionID=114. Also please read the document given in the link

http://www.tedu.edu.tr/tr-TR/Content/Akademik/Akademik Belgeler/Yonetmelikler ve Yonergeler.aspx.