The goal of this course to develop an understanding of the electrical circuits for non-EE students (computer engineering department). Elements of electric circuits and the fundamental laws, general techniques such as nodal, mesh analysis and steady-state AC analysis will be covered. Study on energy storage elements will help students to understand the transient and the steady-state response of first order circuits. The course also aims to introduce elementary electronic circuits such as operational amplifiers and semiconductor devices such as diodes and BJTs. In addition, the course will provide the basic principles of digital circuits emphasing their transistor level implementations. The course will also introduce basic measurement equipments setups and techniques by conducting experiments at the basic electronics laboratory.
MATLAB and LTspice®
Upon successful completion of the course, students will be able to:
(1) Interpret the basic circuit concepts, such as voltage, current, power, energy, etc.,
(2) Use node and mesh analyses methods for the analysis of linear time invariant circuits,
(3) Analyze circuits with operational amplifiers,
(4) Interpret the operation of capacitors and inductors; and analyze both transient and steady-state response of first order circuits,
(5) Identify p-n junction diodes, BJTs, and MOSFETs,
(6) Analyze the transistor level circuits of logic gates including inverters, NAND and NOR,
(7) Identify the basic measurement instruments to perform experiments on electrical circuits,
(8) Perform experiments on resistive circuits,
(9) Perform experiments on opamp circuits,
(10) Perform experiments with diodes and BJTs.
(1) Alexander, C., & Sadiku, M. O. (2007). Fundamentals of Electric Circuits (3rd ed.). McGraw Hill.
(2) Jaeger, R. C., & Blalock, T. N. (2008). Microelectronic Circuit Design. McGraw Hill.
(3) Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (2007). Engineering Circuit Analysis (7th ed.). McGraw Hill.
(4) Johnson, D. E., Johnson, J. R., Hilburn, J. L., & Scott, P. D. (1992). Electric Circuit Analysis. Wiley.
(5) Chapman, S. J. (2004). Electric Machinery Fundamentals (4th ed.). McGraw Hill.
Nilsson, J. W., & Riedel, S. A. (2008). Electric Circuits (8th ed.). Prentice Hall.
Test/Exam (70%), Lab Assignment (30%)
Workload | Hrs |
---|---|
Lectures | 28 |
Course Readings | 14 |
Lab Applications | 28 |
Exams/Quizzes | 28 |
Report on a Topic | 22 |